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ABSTRACT 
 

    Artificial neural networks, ANNs were developed to model the biological oxygen demand 

(BOD), biochemical oxygen demand (COD), and total suspended solids (TSS) treatment in 3 

horizontal subsurface flow (HSSF) constructed wetlands (CWs) located in Samaha village, 

Nile Delta, Egypt. Gravel, hollow plastic bits and shredded tires pieces were used as different 

wetland treatment media. Three hundred data sets were used, of which 240 and 60 for ANNs 

calibration and validation respectively. Input variables for the models are influent 

concentration (Ci), loading rate (q), media surface area (As), and actual velocity (v). 

Performance of the models in calibration and validation processes was evaluated using the 

error and the percentage error between experimental and model values. Output result is the 

effluent concentration (Co). Training procedure for effluent concentrations was quite 

successful; as perfect matches were obtained between measured and calculated 

concentrations. The ANN that showed best BOD modeling  has a structure of 4-5-4-1 (4 input 

variables, 5 neurons in the first hidden layer, 4 neurons in the second hidden layer, and 1 

output variable). As for COD and TSS simulation; the ANN structures were 4-7-5-1 and 4-6-

5-1 respectively. Modeling results displayed very good behavior of the ANN with reliable and 

accurate simulation. Plastic media gave the best treatment performance than both gravel and 

rubber media by percentages varied between 6.75 and 10.84% (more than gravel) and 

between 10.87 and 13.95% (more than rubber) which coped with the measured field results. 

 

Keywords: Constructed wetland, Horizontal subsurface flow, Artificial neural network, 

shredded tires, hollow plastic bits 

1. INTRODUCTION 

Wastewater treatment is a problem that has faced man ever since he discovered that 

discharging his wastes into surface water can lead to many additional environmental 

problems. Constructed wetlands (CWs) are techniques aim to improve water quality and 

reduce the harmful effect of effluent (Sarafraz et al., 2009). Horizontal subsurface flow 

constructed wetlands have a variety of complicated and interrelated physical, chemical, and 

biological processes, so the mathematical representation for these processes is a complex task.  

Constructed wetlands are definitely more complex than conventional treatment processes 

because the diffusive flow and the large number of processes involved in pollution reduction. 

For these reasons, many authors have pointed out that the removal efficiency of constructed 

wetlands is not easily predictable, and being highly influenced by the hydraulic or 

environmental conditions (Marsili-Libelli and Checchi, 2005). For this reason it was obvious 
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to use artificial neural networks (ANNs) to simulate treatment of municipal wastewater 

through HSSF wetlands. 

An Artificial Neural Network (ANN), is a mathematical model that attempts to simulate the 

functional aspects of biological, physical or chemical processes in CWs. The neural networks 

composed of many simple neurons like processing units. These networks have the ability to 

recognize patterns of input and output information and making a group of complex 

relationships linking these input variables with each other and with the output values. Models 

based on ANN have been successfully used in wastewater treatment systems and are very 

effective at capturing the non-linear relationships between variables (multi-input) in complex 

systems (Çinar et al., (2006). Also, these ANNs have the potential ability to predict the value 

of a new output if they are fed with the corresponding input variables (Hu and Hwang, 2002). 

Nayak et al. (2006), reported that; ANN managed for forecasting/predicting, pattern 

recognition and process control in most of the areas in science and technology including 

driving a design equation for the total nitrogen treatment in CWs (Akratos et al., 2009). ANN 

was used to compare the performance of both surface and subsurface flow CWs using an 

ANN–back propagation algorithm. The ANN prediction of COD and BOD were of better 

results in subsurface wetlands than the surface wetlands (Naz et al., 2009). Tomenko et al., 

(2007) compared multiple regression analysis (MRA) with two ANNs; to predict BOD 

concentration at effluent and intermediate points of HSSF wetlands in India. Both MRA and 

ANNs provided an efficient and robust tool in predicting CW performance. Yalcuk, (2012) 

developed an ANN model to represent phenol removal in vertical and horizontal planted and 

unplanted CWs. Calculated results through the training procedure for different wetlands was 

quite successful matching the measured effluent phenol concentrations.  

Wetland beds can contain more than one type of media in different sequences. Gravel and 

soil are the widely media used in subsurface CWs (Zidan et al., 2013). Collaço and Roston, 

(2006), successfully used shredded tires as a medium for HSSF wetlands for treating domestic 

wastewater planted with typha species aquatic macrophytes. Cordesius and Hedström, (2009) 

investigated the use gravel and plastic pieces on treating domestic waste-water. In Samaha 

village, Dakahliya governorate, Egypt, 3 pilot scale HSSF CW cells using gravel, hollow 

plastic pipes and shredded tiers slices as different media were investigated for treating 

primary treated municipal wastewater. The plastic media which has the maximum media 

surface area showed better treatment performance followed by gravel then rubber media 

(Zidan et al. ,2013). The aim of this study was to develop ANN modules to evaluate the 

performance of 3 different media types HSSF CWs in BOD, COD, and TSS removal from 

municipal wastewater.  

2. METHODOLOGY 

2.1. Study Area 

Samaha HSSF wetlands plant that located in Dakahlia governorate, about 100 km northeast of 

Cairo (30  o52’ 09.81” N and 31  o16’ 55.28” E) was built in 1995 for treating 1000 m
3
 d

-1
 of 

primary treated domestic wastewater. The HSSF consists of 8 gravel bed cells (33 m long, 7 

m wide, and 0.7 m deep each) that suffer from over loading and inefficient treatment 

performance. One cell was chosen to examine using different materials as CW bed media . 

The cell was divided into three parallel micro cells (10 m long, 2 m wide, and 0.65 m deep 

each) “Fig. 1”. Three types of treatment media were used ; (a) rubber made from shredded 

tires (average dimensions are 50 mm length, 40 mm width, and 10 mm thickness), (b) hollow 

corrugated pieces of plastic pipes 50 mm length and 19 mm diameter, and (c) natural washed 

gravel in 3 layers (50 mm at bottom,  30 mm at middle , and  less than 20 mm size at top). To 

prevent rubber and plastic media from floating, a plastic screen was placed on the top surface 

and covered by 10 cm coarse gravel layer. 
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2.2. Field water sampling and analysis 

Water samples were collected manually in 500 ml sterile bottles from each cell inlet, outlet 

and every 2 meters in between along the 10 m wetland length. Water samples were stored in 

ice tanks, sent to laboratory and analyzed for BOD, COD, and TSS. Five water samples were 

collected during each sampling cycle. Sampling cycles were repeated 5 times during the 

period from mid-April until mid-October, 2010. The influent and effluent pollutants 

concentrations were analyzed according to Standard Methods (5530D) (APHA, 2005). 

 

 

Figure. 1: Experimental setup for wetland cells 

2.3. Modeling with ANN 

In this study, Various  different networks  with different  number  of  neurons  in  their  

hidden  layers  were studied and tested for each pollutant with input layer and one or more 

hidden layers to find out the output layer. These layers could be arranged as a general neural 

network. The feed-forward network is used in this study as the information moves only in the 

forward direction (Abdel-Hady, (2014).  

The experimental data (influent and effluent concentrations) for steady stage are 25 runs 

where 5 cycles was performed through the steady stage as each cycle represents a specific 

discharge and water samples were repeated five times during each cycle, so the total number 

of input sample was 25.The input variables for the models are influent concentration (Ci – mg 

l
-1

), the hydraulic loading rate (q – m d
-1

), media surface area (As - m
2
), and the actual velocity 

(v – m d
-1

). To increase the input data, every influent concentration gave four intermediate 

outlet concentrations, loading rate, surface area, and actual velocity at lengths 2, 5, 8, and 10 

m from cell inlet for each media which means 100 data patterns/media for BOD, COD, and 

TSS pollutants. Hence, 300 data patterns (25 run × 4 lengths × 3 media) were available from 

the experimental work to train and test the proposed ANN.  

Many different neural networks structure having 4-input variables (Ci, q, As, and v) and one 

output value (Co) for steady operating stage were designed. These multi-feed forward neural 

networks (MFFNNs) have one and two hidden layers with different number of neurons in 

these layers. These MFFNNs were trained and tested. The weight matrixes and biases vectors 

for the selected networks are presented. The program used for implementing the MFFNNs is 

developed by applying the MATLAB neural network toolbox. 
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2.4. Calibration & Validation Processes for ANN models 

The training algorithm of ANN will be used in this study where a target output (effluent 

concentration, Co) is available. The ANN learns during training by adapting to a dataset of 

inputs and the desired output corresponding to them. The network parameters such as the 

weights and biases are adjusted according to the error between the desired and obtained 

outputs in a closed-loop feedback type system, Dreyfus, (2005). Sixty random samples were 

chosen from the total 300 data of each BOD, COD, and TSS pollutants concentration 

samples, to validate the obtained models, these random samples represent 20% of the total 

data and the remaining part of data were used for modeling construction and calibration 

process (Abdel-Hady, 2014). 

After the models have been constructed, they were graphically analyzed for goodness of fit 

by plotting the actual results against the predicted results. The training performance (the 

relationship between the measured concentrations and corresponding model ones); and the 

error values and the percentage errors for these outputs will be discussed. The points that give 

percentage error (difference between measured concentration and model outputs) less than 

5% will be considered as a good output result for the model, between 5 and 10% 

“acceptable”, and more than 10% will be described as “not good representation”. The error 

and the percentage error between experimental and model outputs are computed using the 

following formulae: 

ANNExp CCError                   

(1) 

100








 


Exp

ANNExp
n C

CC
E                  

(2) 

Where: En = artificial neural network percentage error, % , CExp=experimental measured 

output concentration, (mg l
-1

), and CANN= artificial neural network output concentration, (mg 

l
-1

). 

2.5. Comparison between HSSF CW treatment media  

Equations 3 and 4 give the average removal difference, (ARD) of ANN modeled pollutant 

removal efficiency, through 5 discharge cycles (300 data sets) between plastic cell and both 

gravel and rubber cells, whereas equation 5 gives this average difference between gravel and 

rubber (Abdel-Hady, (2014). Discharges of influent wastewater were changed from a 

maximum values to smaller values for the purpose  of estimating the optimum treatment 

efficiency. Discharges gradually reduced from 5.12 to 1.19 m
3
 d

-1
.   

 
 

Cycles of .
RD Gravel & Plastic No

RERE
A gp 

                                 

(3)  

 
 

Cycles of .
 RD Rubber & Plastic No

RERE
A rp 

                             

(4) 

 
 

Cycles of .
 RD Rubber & Gravel No

RERE
A rg 

                             

(5) 

where: REp= removal efficiency of plastic cell outlet, %, REg= removal efficiency of gravel 

cell outlet, %, and REr= removal efficiency of rubber cell outlet, %.  
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3. RSULTS AND DISCUSSIONS 

3.1. Structure of ANNs for BOD, COD, and TSS  

Different networks with one and two hidden layers were considered and their performance 

was evaluated. It was found that the networks with reasonable number of neurons in one 

hidden layer cannot cover all used data. Also, networks with two hidden layers provided 

better results without having large number of neurons in their hidden layers. The number of 

neurons in hidden layers was taken as two or three and was increased till desired results were 

obtained by testing the neural network. Many different neural networks structure having 4-

input variables (Ci, q, As, and v) and one output value (Co) for steady stage were designed. 

Two hidden layers with different number of neurons were considered and trained. Some of 

the MFFNNs were tested, and the comparison between these different networks is listed in 

“Table 1”. 

The MFFNNs for BOD, COD, and TSS  pollutants which show satisfactory results while 

not having a big size with minimum mean square error have a structure of (4-5-4-1), (4-7-5-

1), and (4-6-5-1), respectively. These best networks which give both minimum mean square 

error, (MSE) and minimum percentage error between experimental and ANNs outputs is 

presented in “Fig. 2” to “Fig. 4”. Table (1) present ANN networks features of BOD, COD and 

TSS. The developed ANNs models are capable to minimize to least values of 0.582, 0.590, 

and 0.347, for BOD, COD, and TSS, respectively. The training stops when the validation 

error increases by additional twenty iterations, for the studied pollutants and the ANN 

structure proved to have the minimum MSE value of all networks. The best validation 

performance occurs by 77, 103, and 60 iterations number for BOD, COD, and TSS 

respectively. The correspondence MSE values were 0.582, 0.590, and 0.347 respectively 

which is the minimum of all tested networks.  

Table 1: Comparison between different tested networks for BOD, COD and TSS 

Network 

Structure 

Number of 

Epoch 
Mean Square Error Gradient Mu 

Pollutant 

B
O

D
 

C
O

D
 

T
S

S
 

B
O

D
 

C
O

D
 

T
S

S
 

B
O

D
 

C
O

D
 

T
S

S
 

B
O

D
 

C
O

D
 

T
S

S
 

4-3-3-1 236 53 222 2.99 7.96 4.60 26.2 ≈0 0.09 0.16 ≈0 ≈0 

4-4-3-1 320 89 47 2.07 4.76 2.19 23.4 8.68 54.0 ≈0 20.9 2.39 

4-4-4-1 53  121 3.09  1.28 209  61.0 13.0  2.05 

4-5-3-1 119  102 0.88  1.76 38.1  158 0.45  0.98 

4-5-4-1 77 147 546 0.58 2.99 0.96 10.7 216 1.29 0.15 0.08 0.23 

4-5-5-1 42   3.03   60.4   8.74   

4-6-5-1  54 60  0.88 0.35  96.4 0.75  1.78 2.01 

4-7-5-1  103 52  0.59 1.18  78.8 130  0.23 0.50 

4-7-6-1  61   1.89   221   2.91  
Structures of the chosen ANN for BOD, COD, and TSS are (4-5-4-1), (4-7-5-1), and (4-6-5-1) 

respectively. Epoch: Determines when training will stop once the number of iterations 

exceeds epochs. When training  by minimum error, this represents maximum number of 

iterations. Epoch range = (1, ∞) . 
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Figure. 2: Optimum 

structure of ANN for BOD and 

TSS 

Figure. 3: Optimum 

structure of ANN for COD 

Figure. 4: Optimum 

structure of ANN for TSS 

3.2. Calibration Process for Networks 

A number of 240 patterns for input variables were randomly selected from the available 300 

data sets and used to calibrate the designed networks for the studied pollutants. The training 

performance and error values for BOD, COD, and TSS output pollutants are illustrated in 

“Fig. 5” to “Fig. 7”, respectively. The computed values of BOD, COD and TSS by ANN 

model were in close agreement with their respective measured values. It is found that, the 

error between the experimental effluent concentration and the ANNs model outputs varies 

between -0.85 and +0.66 mg l
-1

 for BOD pollutant. For COD this error ranges from -1.08 to 

+1.06 mg l
-1

, whereas, for TSS the error varies between -0.63 and +0.84 mg l
-1

. Results of 

calibration process are very encouraging and match accurately with the target values. For 

BOD outlet concentration, 236 points give percentage error (En) less than ±5% and 4 points 

gave En between ±5 and ±10%. For COD, 238 points give En less than ±5% and 2 points give 

En between ±5 and ±10%. For TSS effluent, 227 points give En less than ±5% and 11 points 

give En between ±5 and ±10%, and 2 points give En more than ±10%. 

Figure. 5: Training performance and error values of 240 patterns for BOD outputs 
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Figure. 6: Training performance and error values of 240 patterns for COD outputs 

Figure. 7: Training performance and error values of 240 patterns for TSS outputs 

3.3. Validation Process for ANNs  

The validation performance and error values for the proposed ANNs models for 60 patterns 

left from the available 300 data sets are presented in Figures 8 to 10 for BOD, COD, and TSS 

pollutants, respectively. The average error between the experimental and the ANN model 

output concentrations varies between; -0.81 and +0.80 mg l
-1

 for BOD, -1.60 and +1.61 mg l
-1

 

for COD, and -0.70 and +0.99 mg l
-1

 for TSS pollutant. The model results are very close to 

the experimental output concentration for BOD and COD pollutants. For BOD effluent, all 

points (60) give percentage error (En) less than ±5%. As for COD, 59 points give En less than 

±5% and one point give En between ±5 and ±10%. For TSS, the model results are matching 

with the experimental effluent value except few peculiar points. Fifty five points give En less 

than ±5% and 4 points gave En between ±5 and ±10%, and one point give En more than 

±10%. 
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Fig. 8: Validation performance and error values of 60 patterns for BOD outputs 

Fig. 9: Validation performance and error values of 60 patterns for COD outputs 

 

A summary of En for both calibration and validation processes are presented in “Table 2”. 

These results show the stability of the ANN outputs under all conditions including a wide 

pollutants load (discharge range = 1.19 - 5.12 m
3
 d

-1
)  and rapid convergence of the output 

variables to the expected values. This clearly confirms the effectiveness of the proposed ANN 

modules. 
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Fig. 10: Validation performance and error values of 60 patterns for TSS outputs 

 

Table 2: Average percentage errors between Experimental and ANN results 

Parameter 

Average En (%) (ANNs) 

Calibration 

process 

(240 Patterns) 

Validation 

process  

(60 Patterns) 

BOD -0.85  :  +0.66 -0.81    :    +0.81 

COD -1.08    :   +1.06 -1.60   :    +1.60 

TSS -0.63    :   +0.84 -0.70   :   +0.99 

 

3.4. Effects of HSSF CW media on Pollutant treatment  

The ANNs simulated effluent concentrations of BOD, COD, and TSS were evaluated to 

determine the optimum wetland media in pollutants treatment through different flow 

discharges. Table (3) presents average removal differences, (ARD) between HSSF media 

types for BOD, COD, and TSS. As the discharge decreases, the effluent removal efficiency of 

BOD increases for plastic, gravel, and rubber media. The plastic media cell has highest 

removal efficiency followed by the gravel and then the rubber cells essentially due to the 

higher surface area (high amount of attached biofilm bacteria) of the plastic media comparing 

with the other used media (Zidan et al. [15]).  

Table 3: Average removal differences between HSSF media types for BOD, COD, and TSS 

Cycle 

No. 

Discharge 

range 

(m
3
d

-1
) 

ARD BOD (%) ARD COD (%) ARD TSS (%) 

P - G P - R G - R P - G P - R G - R P - G P - R G - R 

1 4.81-5.12 7.40 11.52 4.12 7.43 11.48 4.05 11.05 15.75 4.70 

2 3.28-3.48 7.04 10.96 3.92 7.03 10.94 3.91 17.51 19.26 1.75 

3 2.25-2.40 6.39 10.54 4.15 6.35 10.57 4.22 13.86 17.84 3.98 

4 1.60-1.70 5.75 10.19 4.44 5.73 10.20 4.47 6.77 9.02 3.25 

5 1.19-1.26 5.18 9.21 4.03 5.31 9.18 3.87 5.00 7.90 2.90 

Mean 1.19-5.12 6.75 10.88 4.13 6.77 10.87 4.10 10.84 13.95 3.12 

P=plastic media, R=rubber media, and G=gravel media. 

At CWs outlets, plastic cell gives average BOD removal difference higher than both gravel 

and rubber cells by about 6.75 and 10.88%, respectively. Gravel cell gives average removal 

difference higher than rubber cell by about 4.13%. As for COD, plastic cell gives average 
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removal difference higher than both gravel and rubber cells by about 6.77 and 10.87%, 

respectively. Gravel cell gives average removal difference higher than rubber cells by about 

4.10%. However for TSS, plastic cell gives average removal difference higher than both 

gravel and rubber cells by about 10.84 and 13.95%, respectively. Gravel cell gives average 

removal difference higher than rubber cell by about 3.12%. The removal differences are quite 

higher in case of TSS comparing with BOD and COD due to the treatment mechanism of TSS 

which mostly depends on sedimentation at treatment media pores. 

4. CONCLUSIONS 

The ANNs managed to mimic the HSSF wetlands for BOD, COD and TSS treatment with 

an acceptable accuracy. The ANNs models represent the experimental data in calibration and 

validation processes proving its ability to simulate a variety of complex relationships between 

variables precisely. The ANN networks that show the best fit results having a structure of  4-

5-4-1, 4-7-5-1, and 4-6-5-1, (input variables - 1
st
 hidden layer neurons layer - 2

nd
 hidden layer 

neurons - output variable ) for BOD, COD, and TSS respectively. The ANNs used 4 input 

variables (influent concentration, loading rate, media surface area, and actual velocity to 

model the effluent pollutants concentrations. Results of calibration and validation processes 

are very encouraging and match accurately with the field measured values. Comparisons 

between the ANNs simulated results proved that plastic media had the best treatment 

performance for BOD, COD, and TSS followed by gravel then rubber. The ANN modeling 

technique can be an easy speed design tool to forecast the HSSF CW effluent concentrations 

when assuming the CW influent concentration, loading rate, flow discharge and media type. 
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